
NOTATION 

T(x, t), temperature at point x; t, times; Cs(T), ls(T), heat capacity and thermal con- 
ductivity coefficients; ~, heat exchange coefficient; To, temperature of external medium; 
O(t), specific power of heat sources. 

LITERATURE CITED 

i. A. T. Pugachev, Yu. A. Volkov, and No P. Churakova, Inzh. Fiz. Zh., 38, No. 4, 6C6- 
613 (1980). 

2. A. T. Pugachev and N. P. Churakova, Zav. Lab., 46, No. 8, 737-738 (1980). 
3. A. T. Pugachev, S. I. Kovalenko, N. P. Churakova, et al., Fiz. Tverd. Tela, 46, No. 

8, 2468-2471 (1981). 
4. O. M. Alifanov, Converse Heat Exchange Problems [in Russian], Moscow (1988). 
5. O. M. Alifanov and A. P. Tryanin, Inzh. Fiz. Zh., 48, No. 3, 472-473 (1985). 
6. E. A. Art~akhin, Inzh. Fiz. Zh., 48, No. 3, 490-495 (1985). 
7. E. A. Artyukhin, Inzh. Fiz. Zh., 41, No. 4, 587-592 (1981). 
8. E. A. Artyukhin and A. S. Okhapkin, Inzh. Fiz. Zh., 45, No. 5, 781-788 (1983). 
9. N. V. Muzylev, Zh. Vychisl. Mat. Matem. Fiz., 20, No. 2, 388-400 (1980). 

i0. Yu. V. Tret'yakov, Fizich. ~lektron., No. 14, 91-92 (1977). 
ii. A. V. Lykov, Thermal Conductivity Theory [in Russian], Moscow (1967). 
12. G. I. Marchuk and V. I. Agoshkov, Introduction to Projection Grid Methods [in Russian], 

Moscow (1981). 
13. F. P. Vasil'ev, Methods for Solution of Extremal Problems [in Russian], Moscow (1981). 
14. G. Douglas, G. Dupont, and R. S. Ewing, J. Numer. Anal., 19, No. 3, 503-522 (1979). 

DETERMINATION OF THERMAL CONTACT RESISTANCES USING THE SPECTRAL 

FUNCTIONS OF BOUNDARY EFFECTS 

O. S. Tsakanyan UDC 536.24 

A method is proposed for determining thermal contact resistances by solving the 
inverse heat-conduction problem. 

The growing requirements for the design of economical heat machines cannot be sat:~sfied 
without knowledge of the heat processes occurring in them. The study of heat-exchange pro- 
cesses involves a full+scale:thermophysical experiment which provides information about 
the temperature field from a limited set of observation points, located inside the mad~ine; 
this information is then used to solve the inverse heat-conduction (IHC) problem in order 
to find the boundary effects, which are necessary for determining the thermally stressed 
state of the parts and units of heat machines. 

It is of particular interest to determine boundary conditions of the fourth kind, i.e., 
the thermal contact resistances (TCR's) between the surfaces of the parts in contact, with 
the aid of the solution of the IHC problem from the results of a thermophysical experiment. 

The dynamics of the thermal process for a composite body is described by the heat equa- 
tion 

--[ T) aT ] a [ T) aT 1 (x, g, T) a ~ (x, y, + ~, (x, y, = cv -- 
ax ~ax j ~ ay j 

aT 
a~ (1) 

Besides Eq. (I), the mathematical model (of the phenomenon under consideration) deter- 
mining the thermal state of the object also contains the initial edge conditions 
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Fig. i. Thermal contact resistances obtained 
by solving the IHC problem. 

and the boundary conditions 

T = T ( x ,  y ) ,  t = 0  

of the first kind: Tsu r = T (x, y, t), 

of the Second kind: qsur = q-Is, Y, 0, 

of the third kind: 0~(X, y, t, T)(T sur'--Tm) = ~ ~(X, y, T) , 

of the fourth kind; in the case of an ideal contact 

- T1sur--- T2sur, 

-- ~i (T1) OT1 = - -  ~~ (To) OT2 I ' 
�9 On s u r  " -" On l s ~  

and in the case of a nonideal contact 

aT1 I 
(T~ ~ , ~ - .  T~,~) : - ;~ (TO - - ~ , *  l .'~= 

R (x, y, t) 

= ,~ (T~) _~n lsur __ ~.2(T. ) aT.~an ,sur 

OT 

On 

(2) 

(3) 

(4) 

(5) 

(6) 

(7)  

( 8 )  

In order to solve the IHC problem we must know the temperature dependences for the 
observation points, which are obtained from a physical experiment 

T~ = T(x~, y~, t), s = 1, 2 . . . . .  N, (9 )  

where N is the number of observation points. 

Let us consider the method of solution on the example of contact between two regions 
in the form of rectangles with sides in a 2:1 ratio. Heat conduction for regions ~i and 
~2 is described by the equation 

v2T = o. ( l o )  
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Boundary conditions of the first kind are given on boundary segments F!, F2, r s, and 
r 4 (see Fig. i) in the form of the polynomials 

= 1, x =  O, Oa~.q~.~2; 

=--3, x = 2 ,  @~b'~2;..~ 

mg 

]=0 

=2, O < x < 2 ,  9 = 2 ;  
=4, o < x . ~ 2 ,  v = o .  

(11) 

We must determine the TCR at boundary F s from the known values of the temperature at 
observation points on either side of boundary r 5 at a distance of 0.ii, where s is the width 
of a rectangular element. 

To calculate the TCR's we must determine the surface temperatures T1(x, i) and T2(x, 
i) at Fs for both surfaces of regions ~i and ~2 and the heat flux qs(x, i), passing th]:ough 
the contact boundary, after which we calculate from the formula 

R(x, 1) ...... T,(X, 1)7-T~(x, I ) ,  (12)  
qs(x, 1) 

The h e a t  f l u x  qs(x, 1)acting on b o u n d a r y  r~ i s  found  as  a p o l y n o m i a l  
m~ 

q5 (x, 1) -= ~ b~y, 0 ~ x < 2, 
i=O 

in which the parameters b s j  of the boundary effects are unknown. ~unctions xJ are called 
the spectral components of the boundary effects (any continuous functions, e.g., sin(j~:) 
or exp(ljx), can be taken to be the spectral components of the boundary effect in the ~eneral 
case). 

If we apply the j-th spectral component of the boundary effect to a segment of the 
boundary, e.g., F s, while applying zero boundary effects to the remaining segments in accord- 
ance with the kind of boundary conditions assigned to them, and then solve the heat prcblem, 
we obtain the spectral function Wij(x, y) of the given boundary effect [i]. The complete 
solution of the stationary heat-conduction problem in linear formulation can be represented 
as the superposition of the ~ products of the boundary-effect parameters and the correspcnding 
spectral function: 

T (x, U) ---- "%~ X a~jWii (x, 9). (13) 
i=l  ]=0 

For the nonstationary heat-conduction problem the solution in the k-th time interval 
(when the implicit finite-difference approximation scheme is applied to the heat equation) 
can be represented as 

n m~ 

T '~' (x, v) = _Y ~ -u~>~,, (x, v) + T~ ~ (x, v), < 14) 
i = l  ]=0 

where the first ter~ ~s the reaction to the boundary effect in the k-th time interval and 
the second term, Tn(k)(x, y), is the reaction to the temperature field T(k-l)(x, y). 

When solving the linear heat-conduction problem with a constant time interval we deter- 
mine the spectral functions only once before the problem is actually solved, the situation 
changes when the problem is in the nonlinear formulation, since an iteration process is 
organized to refine the thermal conductivity and capacity, which depend on the sought-after 
function of the temperature. In this case before each interaction the spectral functiolls 
are determined with the thermophysical properties of the object "frozen" with respect to 
the thermal state obtained in the previous iteration. It is pointless to use such spectral 
functions to solve linear and nonlinear problems in the direct formulation since this requires 
considerable computer time and additional memory to store the files of the functions. 

In regard to the IHC problem and the problem of optimization of thermal process it 
is convenient to factor the boundary effects into components and to determine the spectral 
functions during the analysis of the thermal state of the object. 
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The boundary-effect parameters bsj are identified by solving the system of linear 
algebraic equations 

m i  

~(~>(x~, 1 -t- h), s = 1, N1; (15)  ~.~ bsjWsj (x,, 1 q- h)l~ ' --- T~ h> (x., 1 q- h) - -  -a ,  ..., 
j=O 

m i 

1-1olo=r  '(x.. (x, ,  l - - h ) ,  s =  1, ..., N=. 
,i=o (16) 

Here T(ik)(xs, Ys) _ .and T!k)(xs, Ys) are the temperatures at the observation points and 

T~k)(x;, Ys) and[ T~k)(xs, Ys) are the reaction to the known boundary effects and the tem- 

perature field T( k-l)(x, Y). 

In the mathematical treatment of the results of thermophysical experiments we may come 
across different variants of the arrangement of observation points, which necessitates some 
changes in the computational algorithm. For example, the observation points may lie in 
one region al at a distance h = 0.Is from:boundary r s (Fig. i) or in both regions ~I and 
a2 at a distance h on either side of boundary r s. In the first case the parameters bsj are 
determined from the solution of system (15) while in the second case they are found from 
the solution of systems (15) and (16). 

In the case of an indeterminate system of equations we use the method of least squares, 
which enables us to symmetrize the matrix of the initial system of equations and thus obtain 
the solution. 

The surface temperatures Tl(x, y) and T=(x, y) are found from the solution of the heat-con 
conduction problem for regions ~z and ~2 with the boundary effects at rl, r2, ra, and rg 
which are known from the formulation of the problem, and,the heat flux qs(X, I), which we 
found. After this the thermal contact resistances are calculated from Eq. (12) and a similar 
procedure is used in the next time interval. 

Let us consider the results of our study of how the error of approximation of the heat 
flux acting on the surfaces ~I and ~2 between elements of a composite structure affects 
the error of TCR determination. 

As the values of the temperatures at the observation points for determining the TCR's 
we take the results from the solution of the stationary heat-conduction problem in the linear 
formulation, which were obtained by the method of finite differences for a rectangular 
region with a 2:2 ratio of sides, approximated by a three-dimensional grid with spacing 
h = 0. i. When the IHC problem is solved the values of the temperature function in the vicinity 
of the contact boundary have an approximation accuracy of the order of 0(h) and the results 
from the solution of this same problem in the linear formulation under conditions of an 
ideal contact will have an accuracy 0(h2). In order to increase the accuracy of the approxi- 
mation of the temperature function when solving the IHC problem, we decrease the approxi- 
mation step near the contact boundary (on either side) to 0.i h. The value of this step 
was established by means of a computational experiment, consisting in determining the:heat 
flux and the surface temperature at the contact boundary between two rectangular regions 
ax and a2 under the conditions of ideal contact. It was expressed as the equality of the 
temperatures at the contact surface with the aid of the spectral functions of the heat flux 
for both regions and the reactions of the known boundary effects Taz (Xs, i) and Ta2(x s, I) 
for each approximation node at the contact boundary: 

ra , (xs ,  I)+ ~.~bs~Wsj(x~, 1)le = T a . ( x s ,  I)+ bsjWsj(x., I)IQ , ,  (17)  
j=0 1=o 

where s is the number of the nodal point with respect to the x coordinate, By solving the 
system of linear algebraic equations (17) we determined the heat-flux approximation para- 
meters bsj and then calculated the surface temperature, which was compared with the corres- 
ponding temperature obtained by solving the problem for the entire region ~. The root-mean- 
square deviations between the results of the solutions on the contact line was less than 
0.001Tma x. 
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Figure 1 shows the results of TCR approximation when the heat flux qs(x, i) was approxi- 
mated with a polynomial of the second degree (curves 1-6) and fourth degree (curves 7-9). 
As the base for comparison of the TCR's for R = i we took the value corresponding to the 
thermal resistance of the body contained between the contact surface and the surface on 
which the observation points are located. In determining the TCR's we varied the number 
of observation points, for which the values of the temperature were taken from the solution 
of the direct problem. 

We give the coordinates of the observation points used in the calculations: PI(0.1, 
I.I), P2(0.5, I.i), e3(l.0, i.i), P4(1.5, i.i), P5(1.9, I.i), Ps(0.1, 0.9), P7(0.5, 0.9), 
Pg(l.0, 0.9), Pg(l.5, 0.9), and Pi0(1.9, 0.9). 

The notation of the curves in Fig. I corresponds to the variants of the solutions of 
the IHC problem with the observation points arranged as follows: curve I) Pl, P2, Pb: 2) 
PI-Pb; 3) 19 points on the coordinate line y = I.I; 4) PI, P~, Pb, P6, Ps, Pl0; 5) Pl~-Pl0; 
6) 19 points each on coordinate lines y = i.I and y = 0~9; 7) PI-Pb; 8) P~-P~0; 9) PI~PI0. 

Since the temperatures at the observation points have been taken from the solution 
of the direct heat-conduction problem under the conditions of ideal contact between regions 
~l and ~2, the distributed TRC's obtained can be considered to be the approximation errors 
of the boundary condition. 

Upon analyzing Fig. i, we can distinguish the following distinctive features that accom- 
pany solution of the IHC problem. 

If the observation points are located in the hotter element, the approximation error 
in the TRC determination is predominantly positive (see curves i-3 and 7). 

When the observation points are located in the cooler element the TRC approximation 
error is negative (see curve 8). 

If the observation points are in both elements and are arranged in pairs opposite each 
other on either side of the contact surface, the range of the TRC approximation error de- 
creases in conrparison with the results obtained by solving the problem when the observation 
points are located in one of the elements (see curves i and 4, 2 and 5, 7 and 9). 

For a fixed degree of the polynomial approximating the heat flux qs(x, i) there exists 
a limit to the number of observed points, after which the approximation error virtually 
does not change (see curves i, 2, and 3, curves 5 and 6, and curves 7-9, which differ only 
slightly from the results when a large number of observation points is used). The degree 
of the approximating polynomial affects primarily the temperature difference between the 
surfaces in contact. As the degree of the polynomial increases the temperature difference 
decreases, which means that the TRC approximation error also decreases. The degree of the 
polynomial can increase to a certain limit, after which any further increase is undesirable. 
Since the approximating capabilities of the polynomial function have been virtually ex- 
hausted, [it turned out that for the methodological problem under consideration the fourth 
degree is the limit for the polynomial approximating qb(x, I). In our study the degree 
of the polynomial varied from the second to the sixth, inclusively]. 

The size of the step of three-dimensional approximation near the contact boundary has 
an effect mainly on the error of the method; as it decreases the accuracy of the results 
increases while the approximation error for the boundary condition changes little in the 
direction of a decrease. 

Our studies have made it possible to evaluate the level of the expected errors of the 
method in the TRC determination. The inverse problems are sensitive to a variety of errors, 
including errors in the approximation of the heat equations. When solving the problems, 
therefore, a dense grid must be used in the region of the contact of elements of the composite 
body. 

If the ratio of the thermal conductivities of the materials in contact is small, ~e 
can easily reconcile the equality of the temperature drops per approximation step in space 
by changing it on one side of the contact boundary for the body with the lower thermal con- 
ductivity, i.e., by using an adaptive irregular gird. When the themal conductivity ratio 
is larger the use of an irregular grid is subject to limitations due to the growth of the 
system of finite-difference equations, which cannot always be solved with the available 
computers. Moreover, the construction of an adaptive grid requires a lot of computer time. 
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The application of the Kirchhoff approximation to the initial mathematical model allows 
us to solve the problem on a regular grid, since the boundary conditions (6) are transformed 
into the equality of the derivatives of the new functions with respect to the normal. In 
this case at the point of contact there is a step between the new functions, which increases 
as the ratio of the thermal conductivities of the materials in contact increases. The IHC 
problem is best solved (from the standpoint of computational difficulties) by using the 
method when the observation points are arranged in one of th ebodies in contact. 

In summary, the proposed method of solving the IHC problem on the basis of limited 
information about the thermal state of the composite body allows the TRC to be calculated 
with engineering accuracy by numerical methods, the use of which is necessitated, as a rule, 
by the complex geometry of the objects studied. The most promising for solving problems 
of this class is the regional-structural method [2], which allows the heat flux to be deter- 
mined in a continuous form. 

NOTATION 

Here T denotes the temperature; x and y are the spatial coordinates; t is the time 
coordinate; q is the heat flux, a:ij and bij are the parameters of the boundary-effect func- 
tions; Wij are the spectral boundary-effect fucntions; c v is the specific heat at constant 
volume; l-is the thermal conductivity; = is the heat-exchange coefficient; and R is the 
thermal contact resistance. Indices: s is the number of the observation point; sur denotes 
surface; and m denotes medium. 

. 
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APPLICATION OF DIRICHLET AND NEUMANN PROBLEMS IN CONNECTION 

WITH STUDIES OF NONSTATIONARY HEAT CONDUCTION 

V. P. Kozlov, V. S. Adamchuk, 
and V. N. Lipovtsev 

UDC 536.~1 

Regularities in the development of three-dimensional nonstationary temperature 
fields in semi-bounded iso- and orthotropic media are deduced under discontinu- 
ous boundary conditions of the first or second kind, given in the most general 
form. 

A theoretical foundation for the creation of modern methods and measuring tools for 
the nondestructive control of thermophysical characteristics (TPC) of various materials is 
furnished by appropriate solutions of many-dimensional nonstationary problems of heat con- 
duction with discontinuous boundary conditions (BC) [1-22]. As a result of the action of 
arbitrary discontinuous BC on surfaces of a medium being investigated, temperature fields 
arising directly from a boundary surface (in a region of action of discontinuous BC) will 
carry thermophysical information concerning the whole complex of TPC for the given medium. 
This latter circumstance makes it possible to organize complex thermophysical measurements 
of various materials without invading its intrinsic structure (the so-called methods and 
means of nondestructive control of TPC). 

In the present paper we consdier the classical formulations of Dirichlet and Neumann 
problems in a nonstationary version and apply them to the solution of corresponding axially- 
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